f08 — Least-squares and Eigenvalue Problems (LAPACK) f08jgc

NAG C Library Function Document

nag_dpteqr (f08jgc)

1 Purpose

nag_dpteqr (f08jgc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
positive-definite tridiagonal matrix, or of a real symmetric positive-definite matrix which has been reduced
to tridiagonal form.

2 Specification

void nag_dpteqr (Nag_OrderType order, Nag_ComputeZType compz, Integer n,
double d[], double e[], double z[], Integer pdz, NagError xfail)

3 Description

nag_dpteqr (f08jgc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
positive-definite tridiagonal matrix 7. In other words, it can compute the spectral factorization of T as

T =ZAZT,

where A is a diagonal matrix whose diagonal elements are the eigenvalues);, and Z is the orthogonal
matrix whose columns are the eigenvectors z;. Thus

Tzi:)\izi7 7;:1,2,...,’]1.

The function may also be used to compute all the eigenvalues and eigenvectors of a real symmetric
positive-definite matrix A which has been reduced to tridiagonal form 7

A=QTQT, where () is orthogonal
= (Q2)AMQ2)".
In this case, the matrix () must be formed explicitly and passed to nag dpteqr (f08jgc), which is called

with compz = Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal
form and form @ are:

full matrix nag_dsytrd (f08fec) 4+ nag_dorgtr (fO8ffc)
full matrix, packed storage nag dsptrd (f08gec) + nag_dopgtr (f08gfc)
band matrix nag_dsbtrd (f08hec) with vect = Nag_FormQ.

nag_dpteqr (f08jgc) first factorizes T' as LDL” where L is unit lower bidiagonal and D is diagonal. It

forms the bidiagonal matrix B = LD%, and then calls nag_dbdsqr (f08mec) to compute the singular values
of B which are the same as the eigenvalues of 7. The method used by the function allows high relative
accuracy to be achieved in the small eigenvalues of 7. The eigenvectors are normalized so that ||z;||, = 1,
but are determined only to within a factor £1.

4 References

Barlow J and Demmel] W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762-791

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

[NP3645/7] 108jgc. 1

f08jgc NAG C Library Manual

order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: compz — Nag_ComputeZType Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if compz = Nag NotZ, only the eigenvalues are computed (and the array z is not
referenced);

if compz = Nag_InitZ, the eigenvalues and eigenvectors of 7" are computed (and the array z
is initialised by the routine);

if compz = Nag_UpdateZ, the eigenvalues and eigenvectors of A are computed (and the
array z must contain the matrix () on entry).

Constraint: compz = Nag_NotZ, Nag_UpdateZ or Nag_InitZ.

3: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

4: d[dim] — double Input/Output
Note: the dimension, dim, of the array d must be at least max(1,n).
On entry: the diagonal elements of the tridiagonal matrix 7'
On exit: the n eigenvalues in descending order, unless fail > 0, in which case the array is
overwritten.

5: e[dim] — double Input/Output
Note: the dimension, dim, of the array e must be at least max(1,n — 1).
On entry: the off-diagonal elements of the tridiagonal matrix 7.

On exit: the array is overwritten.

6: z[dim] — double Input/Output

Note: the dimension, dim, of the array z must be at least
max(1,pdz X n) when compz = Nag UpdateZ or Nag InitZ;
1 when compz = Nag _NotZ.

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On entry: if compz = Nag_UpdateZ, z must contain the orthogonal matrix () from the reduction to
tridiagonal form. If compz = Nag_ InitZ, z need not be set.

On exit: if compz = Nag_InitZ or Nag_UpdateZ, the n required orthonormal eigenvectors stored as
columns of z; the ith column corresponds to the ¢th eigenvalue, where ¢ = 1,2,...,n, unless
fail > 0.

z is not referenced if compz = Nag NotZ.

7: pdz — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.
Constraints:

if compz = Nag UpdateZ or Nag InitZ, pdz > max(1,n);

108jgc.2 [NP3645/7]

f08 — Least-squares and FEigenvalue Problems (LAPACK) f08jgc

if compz = Nag NotZ, pdz > 1.

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdz = (value).
Constraint: pdz > 0.
NE_ENUM_INT_2

On entry, compz = (value), n = (value), pdz = (value).
Constraint: if compz = Nag UpdateZ or Nag InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.

On entry, n = (value), compz = (value), pdz = (value).
Constraint: if compz = Nag_UpdateZ or Nag_InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.

NE_CONVERGENCE

The leading minor of order (value) is not positive-definite and the Cholesky factorization of 7" could
not be completed. Hence T itself is not positive-definite.

The algorithm to compute the singular values of the Cholesky factor B failed to converge; (value)
off-diagonal elements did not converge to zero.
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The eigenvalues and eigenvectors of 7' are computed to high relative accuracy which means that if they
vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors) will be computed
more accurately than, for example, with the standard QR method. However, the reduction to tridiagonal
form (prior to calling the function) may exclude the possibility of obtaining high relative accuracy in the
small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

To be more precise, let H be the tridiagonal matrix defined by H = DT'D, where D is diagonal with
1

dy; = t.2, and h;; =1 for all i. If X, is an exact eigenvalue of 7" and J\; is the corresponding computed

i

value, then
A = Nl < c(n)ery(H)A;

where ¢(n) is a modestly increasing function of n, € is the machine precision, and x,(H) is the condition
number of H with respect to inversion defined by: k,(H) = ||[H| - |[H'|.

[NP3645/7] 108jge.3

f08jgc NAG C Library Manual

If z; is the corresponding exact eigenvector of 7', and z; is the corresponding computed eigenvector, then
the angle 6(Z;, z;) between them is bounded as follows:

c(n)ery(H)
relgap,
where relgap; is the relative gap between); and the other eigenvalues, defined by

relgap, = minM
oia (NN

0(2i7 Zi) <

8 Further Comments

The total number of floating-point operations is typically about 30n> if compz = Nag_NotZ and about 6n°
if compz = Nag_UpdateZ or Nag_ InitZ, but depends on how rapidly the algorithm converges. When
compz = Nag_NotZ, the operations are all performed in scalar mode; the additional operations to compute
the eigenvectors when compz = Nag_UpdateZ or Nag_InitZ can be vectorized and on some machines
may be performed much faster.

The complex analogue of this function is nag_zpteqr (fO8juc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric positive-definite tridiagonal matrix 7,
where

4.16 3.17 0.00 0.00
3.17 525 =097 0.00
0.00 —-0.97 1.09 0.55
0.00 0.00 055 0.62

9.1 Program Text
/* nag_dpteqr (f08jgc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, n, pdz, d_len, e_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *z=0, *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
order = Nag_ColMajor;
#else
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f08jgc Example Program Results\n\n");

/* Skip heading in data file */

108jgc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vscanf ("%*["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
pdz = n;

d_len = n;

e_len = n-1;

/* Allocate memory */
if (!(z = NAG_ALLOC(n * n, double))
! (d = NAG_ALLOC(d_len, double))

[
[
! (e = NAG_ALLOC(e_1len, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read T from data file */

for (i = 0; i < d_len; ++1i)
Vscanf ("$1f", &d[i]);

for (i = 0; i < e_len; ++1i)
Vscanf ("$1f", selil);

/* Calculate all the eigenvalues and eigenvectors of T *x/

f08jgc(order, Nag_InitZ, n, 4, e, z, pdz,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from £08jgc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors =*/
Vprintf (" Eigenvalues\n");
for (i = 0; i < n; ++1i)
Vprintf (" %7.41f£",d4d[i]);
Vprintf ("\n\n") ;

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

z, pdz, "Eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf ("Error from xO4cac.\n%s\n", fail.message);

exit_status = 1;
goto END;

) NAG_FREE (d
) NAG_FREE (e
) NAG_FREE (z
n exit_statu

)
)
)
s

’
7
7
2

9.2 Program Data

f08jgc Example Program Data
4 :Value of N
4.16 5.25 1.09 0.62

3.17 -=-0.97 0.55 :End of matrix T

9.3 Program Results

f08jgc Example Program Results

Eigenvalues
8.0023 1.9926 1.0014 0.1237

Eigenvectors
1 2 3 4

f08jgc

1 0.6326 0.6245 -0.4191 0.1847

2 0.7668 -0.4270 0.4176 -0.2352

3 -0.1082 0.06071 0.4594 -0.6393

4 -0.0081 0.2432 0.6625 0.7084
[NP3645/7]

f08jgc.5 (last)

	f08jgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	compz
	n
	d
	e
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

